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Abstract

We introduce a new memory architecture, Bayesian Re-
lational Memory (BRM), to improve the generalization abil-
ity for semantic visual navigation agents in unseen environ-
ments, where an agent is given a semantic target to navi-
gate towards. BRM takes the form of a probabilistic rela-
tion graph over semantic entities (e.g., room types), which
allows (1) capturing the layout prior from training environ-
ments, i.e., prior knowledge, (2) estimating posterior layout
at test time, i.e., memory update, and (3) efficient planning
for navigation, altogether. We develop a BRM agent consist-
ing of a BRM module for producing sub-goals and a goal-
conditioned locomotion module for control. When testing
in unseen environments, the BRM agent outperforms base-
lines that do not explicitly utilize the probabilistic relational
memory structure.

1. Introduction
Memory is a crucial component for intelligent agents

to gain extensive reasoning abilities over a long horizon.
One such challenge is visual navigation, where an agent is
placed to an environment with unknown layouts and room
connectivity, acts on visual signal perceived from its sur-
rounding, explores and reaches a goal position efficiently.

Due to partial observability, the agent must memorize its
past experiences and react accordingly. Hence, deep learn-
ing (DL) models for visual navigation often encodes mem-
ory structures in its design. LSTM is initially used to as
general-purpose implicit memory [36, 35, 10]. Recently, to
improve the performance, explicit and navigation-specific
structural memory are used [42, 24, 46, 25].

Two categories exist for navigation-specific memory:
the spatial memory [42, 24] and topological memory [25,
46]. The core idea of spatial memory is to extend the
1-dimensional memory in LSTM to a 2-dimensional ma-
trix that represents the spatial structure of the environment,
where a particular entry in the matrix corresponds to a 2D
location/region in the environment. Due to its regular struc-
ture, value iteration [50] can be applied directly for effective
planning over the memory matrix.

However, planning on such spatial memory can be com-
putationally expensive for environments with large rooms.
To navigate, precise localization of an agent is often not
unnecessary. Extensive psychological evidences [46] also
show that animals do not rely strongly on metric repre-
sentations [54, 22]. Instead, humans primarily depend on
a landmark-based navigation strategy, which can be sup-
ported by qualitative topological knowledge of the environ-
ment [22]. Therefore, it is reasonable to represent the mem-
ory as a topological graph where the vertices are landmarks
in the environment and edges denote short-term reachabil-
ity between landmarks. During navigation, a localization
network is trained to identify the position of the agent and
the goal w.r.t. the landmarks in the memory and an efficient
graph search can be used for long-term planning.

However, still human navigation shows superior gen-
eralization performance which cannot be explained by ei-
ther spatial or topological memory. For example, first-time
home visitors naturally move towards the kitchen (rather
than outdoor or toilet) to get a plate; from kitchen to bed-
room, they know that living room may be an intermedi-
ate waypoint. Although visually different, such semantic
knowledge, i.e., the “close-by” relations over semantic en-
tities, are naturally shared across environments and can be
learned from previous experience to guide future naviga-
tion. In comparison, existing approaches of topological
memory assume pre-exploration experiences of the envi-
ronment before navigation starts [25, 46], provide no mem-
ory updating operations, and cannot incorporate the prior
knowledge of scene layouts and configurations from previ-
ously seen environments.

In this work, we propose a new memory design for visual
navigation, Bayesian Relational Memory (BRM), which (1)
captures the prior knowledge of scene layouts from training
environments and (2) allows both efficient planning and up-
dating during test-time exploration. BRM can be viewed
as a probabilistic version of a topological memory with se-
mantic abstractions: each node in BRM denotes a semantic
concept (e.g., object category, room type, etc), which can
be detected via a neural detector, and each edge denotes the
relation between two concepts. In each environment, a sin-
gle relation may be present or not. For each relation (edge),
we can average its existences over all training environments
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Figure 1. A demonstration of our task and method. The agent perceives visual signals and needs to find the kitchen, which cannot be seen
from outside (leftmost). So the agent plans in its memory and conclude that it may first find a likely intermediate waypoint, i.e., living
room. Then the agent repeatedly updates its belief of the environment layout, re-plans accordingly and reaches the kitchen in the end.

and learn an existence probability to denote the prior knowl-
edge between two semantic concepts. During exploration
at test time, we can incrementally observe the existences
of relations within that particular test environment. There-
fore, we can use these environment specific observations
to update the probability of those relations in the memory
via the Bayes rule to derive the posterior knowledge. Ad-
ditionally, we train a semantic-goal-conditioned LSTM lo-
comotion policy for control via deep reinforcement learning
(DRL), and by planning on the relation graph with posterior
probabilities, the agent picks the next semantic sub-goal to
navigate towards.

We evaluate our BRM method in a semantic visual nav-
igation task on top of the House3D environment [58, 10],
which provides a diverse set of objects, textures and human-
designed indoor scenes. The semantic scenes and entities
in House3D are fully labeled (with noise), which are natu-
ral for our BRM model. In the navigation task, the agent
observes first-person visual signals and needs to navigate
towards a particular room type. We utilize the room types
as the semantic concepts (nodes) in BRM and the ”close-
by” relations as the edges. We evaluate on unseen envi-
ronments with random initial locations and compare our
learned model against other DRL-based approaches with-
out the BRM representation. Experimental results show that
the agent equipped with BRM can achieve the semantic goal
with higher success rates and fewer navigation steps.

Our contributions are as follows: (1) we proposed a
new memory representation, Bayesian Relational Memory
(BRM), in the form of probabilistic relation graphs over
semantic concepts; (2) BRM is capable of encoding prior
knowledge over training environments as well as efficient
planning and updating at test time; (3) by integrating BRM
into a DRL locomotion policy, we show that the generaliza-
tion performances can be significantly improved.

2. Related Work

Navigation is one of the most fundamental problems in
mobile robotics. Traditional approaches (like SLAM) build

metric maps via sensory signals, which is subsequently
used for planning [17, 4, 51, 16]. More recently, thanks to
the advances of deep learning, end-to-end approaches have
been applied to tackle navigation in various domains, such
as mazes [36, 27], indoor scenes [63, 5, 48, 37, 30], au-
tonomous driving [7, 59, 13], and Google street view [35].
There are also nice summaries of recent progresses [2, 37].
We focus on indoor navigation scenario with House3D envi-
ronment [58] which contains real-world-consistent relations
between semantic entities and provides ground-truth labels
of objects and scenes.

There are also works studying visual navigation under
natural language guidance, including instruction follow-
ing [6, 39, 23, 55, 3] and question answering [11, 10, 1].
These tasks require the agent to understand the natural lan-
guage and reason accordingly in an interactive environment.
In our semantic navigation task, the goal instruction is sim-
plified to a single semantic concept and hence we focus
more on the reasoning ability of navigation agents.

In our work, the reasoning is performed on the relations
over semantic concepts from visual signals. Similar ideas
of using semantic knowledge to enhance reasoning have
been applied to image classification [34, 56], segmenta-
tion [52, 64], situation recognition [33], visual question an-
swering [57, 9, 53, 28, 26], image retrieval [29] and relation
detection [62]. Savinov et al. [47] and Kuang et al. [18] also
consider extracting visual concepts dynamically by treat-
ing every received input frame as an individual concept and
storing them in the memory. The most related work to ours
is a concurrent one by Wei et al. [60], which considers vi-
sual navigation towards an object category and utilizes a
knowledge graph as the prior knowledge. Wei et al. [60]
use a fixed graph to extract features for the target as an extra
input to the locomotion without graph updating or planning.
While in our work, the relation graph is used in a Bayesian
manner as a representation for the memory, which unites
use of prior knowledge, updating and planning altogether.

From a reinforcement learning perspective, our work is
related to the model-based approaches [14, 45, 61, 44, 32],
in the sense that we model the environment layout via a re-
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Figure 2. The architecture overview of our proposed navigation agent equipped with the Bayesian Relational Memory (BRM).

lation graph and plan on it. Our work is also related to hier-
archical reinforcement learning [49, 12, 31], where the con-
troller (BRM) produces a high-level sub-goal for the sub-
policy (locomotion) to pursue. Furthermore, BRM learns
from multi-task training and its update operation fast adapts
the prior relations to the test environment, which can be also
viewed as a form of meta-learning [19, 15, 38].

3. Method
3.1. Task Setup

We consider the semantic visual navigation problem
where an agent interacts with an environment with dis-
crete time steps and navigates towards a semantic goal. In
House3D, the semantic entities of interest are room types
and we assume a fixed number of K categories. In the be-
ginning of an episode, the agent is given a semantic target
T ∈ T = {T1, . . . , TK} to navigate towards for a success.
At each time step t, the agent receives a visual observation
st and produces an action at ∈ A conditioning on st and T .

We aim to learn a neural agent that can generalize to un-
seen environments. Hence, we train the agent on a training
set Etrain, where the ground-truth labels are assumed, and
validate on Evalid. Evaluation is performed on another sep-
arate set of environments Etest. At test time, the agent only
access to the visual signal st without any pre-exploration
experiences of the test environment.

3.2. Method Overview

The overall architecture of a BRM agent is shown in
Fig. 2, which has two modules, the Bayesian Relational
Memory (BRM) as well as an LSTM locomotor policy for
control (Fig. 2 left). Particularly, the key component of a
BRM agent is a probabilistic relation graph (Fig. 2 right),
where each node corresponds to a particular semantic target
Ti. For semantic target Ti and Tj , the edge between them
denotes the “close-by” relation and the probability of that
edge implies how likely Ti and Tj are close to each other in
the current environment.

At a high level, the locomotion is a semantic-goal-

conditioned policy which takes in both the visual input st
and the sub-goal g ∈ T produced by the BRM module to
produce actions towards g. The BRM module takes in the
visual observation st at each time step, extracts the semantic
information via a CNN detector and store them in a replay
buffer. We periodically update the posterior probability of
each edge in the relation graph and re-plan to produce a
new sub-goal. In our work, the graph is updated every fixed
number of N steps. Notably, we do not assume existences
of all concepts — in case of a missing concept in particu-
lar environment, the posterior of its associated edges will
approach zero as more experiences gained in an episode.

3.3. Bayesian Relational Memory
The BRM module consists of two parts, a semantic clas-

sifier and the most important component, a probabilistic re-
lation graph over semantic concepts, in the form of a proba-
bilistic graphical model allowing efficient planning and pos-
terior updates.

Intuitively, at each time step, the agent detects the
surrounding room type and maintains the probability of
whether two room types Ti and Tj are “nearby” in the cur-
rent environment. If the agent starts from room Ti and
reaches another room Tj within a few steps, the probabil-
ity of “nearby” relation between Ti and Tj should be in-
creased1; otherwise the probability should be decreased.
Periodically, the graph is updated and the agent finds the
most likely path from the current room towards the target as
a navigation guidance.

We introduce these two components in details as well as
how to update and plan with BRM as follows.
Semantic classifier: The semantic classifier detects the
room type label ct for the agent’s surrounding region. It
can be trained by supervised learning on Etrain. Note that for
robust room type classification, only using the first-person
view image may not be enough. For example, the agent in
a bedroom may face towards a wall, where the first-person
image is not informative at all for the classifier, but a bed
might be just behind. So we take the panoramic view as the

1In perfect noiseless setting, the relation should with probability 1.
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Figure 3. Overview of the planning (Left) and the update operation (Right) with BRM.

classifier input, which consists of 4 images, s1t , . . . , s
4
t with

different view angles. We use a 10-layer CNN with batch
normalization to extract features f(sit) for each sit and com-
pute the attention weights over these visual features by li =
f(sio)W

T
1 W2

[
f(s1o), . . . , f(s

4
o)
]
ai = softmax(li) with pa-

rameters W1,W2. Then the weighted average of these four
features

∑
i aif(s

i
t) is used for the final sigmoid predic-

tions for each semantic concept Ti2. This results in a K-
dimensional binary vector ct ∈ {0, 1}K at time t.
Probabilistic relation graph: We represent the probabilis-
tic graph in the form of a graphical model P (z, y;ψ) with
latent variable z, observation variable y and parameter ψ.

Since we have K semantic concepts, there are K3 nodes
and K(K − 1)/2 relations (edges) in the graph. Each rela-
tion is probabilistic (i.e., it may exist or not with probabil-
ity) and before entering a particular environment, we only
hold a prior belief of that relation. Formally, for the relation
between Ti and Tj , we adopt a Bernoulli variable zi,j de-
fined by zi,j ∼ Bernoulli(ψprior

i,j ), where parameter ψprior
i,j

denotes the prior belief of zi,j existing. During exploration,
the agent can noisily observe zi,j and use the noisy observa-
tions to estimate the true value of zi,j . We define the noisy
observation model P (yi,j |zi,j) by

yi,j ∼
{

Bernoulli(ψobs
i,j,0) if zi,j = 0

Bernoulli(1− ψobs
i,j,1) if zi,j = 1

, (1)

where ψobs is another parameter to learn. At each time step,
the agent holds an overall posterior belief P (z|Y) of rela-
tion existences within the current environment, based on its
experiences Y , namely the samples of variable y.
Posterior update and planning: A visualization of the
procedures is shown in Fig. 3. We assume the agent ex-
plores the current environment for a short horizon of N
steps and stores the recent semantic signals ct, . . . , ct+N in
the replay buffer. Then we compute the bit-OR operation
over these binary vectors B = ct OR . . . OR ct+N . B
represents all the visited regions within a short (N -step) ex-
ploration period. When two targets appear concurrently in
a short trajectory, they are assumed to be “close-by”. For
Ti and Tj with B(Ti) = B(Tj) = 1, Ti and Tj should

2It is a multi-label classification setting. Imagine an open kitchen with
both cooking facilities and dining tables could have two labels.

3In fact we have K + 1 nodes. For clarity purpose, we use K here and
explain the details of the extra node later in Sec. 3.5.
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Figure 4. Learning the prior probability of a particular relation by
analyzing the existence of that relation in each training environ-
ment and then summarizing the overall statistics.

be nearby in the current environment, namely a sample of
yi,j = 1; otherwise for B(Ti) 6= B(Tj), we get a sample of
yi,j = 0. With all the history samples of y as Y , we can per-
form posterior inference, i.e., compute posterior Bernoulli
distribution P (zi,j |Yi,j), for each zi,j by the Bayes rule.

Let ẑi,j = P (zi,j |Yi,j) denote the posterior probability
of relation over Ti and Tj . Given the current beliefs ẑ, the
semantic signal ct and the target T , we search for an optimal
plan τ∗ = {τ0, τ1, . . . , τm−1, τm} over the graph, where
τi ∈ {1 . . .K} denotes an index of concepts, so that the
joint belief along the path from some current position to the
goal is maximized: τ? = argmaxτ ct(Tτ0)

∏m
i=1 ẑτi−1,τi .

After obtaining τ?, we execute the locomotion policy for
sub-goal gt = Tτ?

1
, and then periodically update the graph,

clear the replay buffer and re-plan every N steps.
Learning the probabilistic graph: The parameter ψ has
two parts: ψprior for the prior of z and ψobs for the noisy
observation y.

For the prior parameter ψprior, we learn from Etrain with
the ground truth labels. A visualization is shown in Fig. 4.
For each pair of room types Ti and Tj , we enumerate all
training environments and run random explorations from
some location of room type Ti. If eventually the agent
reaches somewhere of room type Tj , we consider Ti and
Tj are nearby and therefore a positive sample zi,j = 1;
otherwise a negative sample zi,j = 0. Suppose Z denotes
all the samples we obtained for z. We run maximum like-
lihood estimate for ψprior by maximizing LMLE(ψ

prior) =
P (Z|ψprior). We can choose any exploration strategy such
that for any “close-by” targets, they appear together in a
short exploration trajectory more frequently. Random ex-
ploration is the most lightweight option among all.

The noisy observation parameter ψobs is related to the



Figure 5. The learned prior of the relations, including the most (red) and least (blue) likely nearby rooms for dining room (Left), bedroom
(Mid.) and outdoor (Right), with numbers denoting ψprior, i.e., the prior probability of two room types are nearby.

performance of the locomotion policy µ(θ): if µ(θ) has a
higher navigation success rate, ψobs should be smaller (i.e.,
low noise level); when µ(θ) is poor, ψobs should be larger
(cf. Eq. (1)). Unfortunately, there is no direct learning su-
pervision for ψobs. However, we can evaluate the “good-
ness” of a particular value of ψobs by evaluating the success
rate of the overall BRM agent on Evalid. Therefore, we can
simply run grid search to derive the best parameter.

3.4. The Goal Conditioned Policy

We learn an LSTM locomotion policy µ(st, g; θ) param-
eterized by θ, which conditions on observation st and nav-
igates towards goal g. Following Wu et al. [58], we learn
µ(st, g; θ) by formulating the task as a reinforcement learn-
ing problem with shaped reward: when the agent moves
towards target room g, it receives a positive reward propor-
tional to the distance decrements; if the agent moves apart
or hits an obstacle, a penalty is presented. A success reward
of 10 and a time penalty of 0.1 are also assigned. We opti-
mize the policy on Etrain via the actor-critic method [40] with
a curriculum learning paradigm by periodically increasing
the maximum spawn distance to the target g. Additionally,
thanks to a limited set of K targets, we adopt a behavior
approach [8] for improved performances: we train a sepa-
rate policy µi(st; θi) for each semantic target Ti and when
given the sub-goal g from the BRM module, we directly ex-
ecute its corresponding behavior network. We empirically
observe it performs better than the original gated-attention
policy in Wu et al.[58]. Such an architecture is also com-
mon technique in other domains such as RL [41, 20] and
robotics [21].

3.5. Implementation Details

We introduce those crucial details below and defer the
remaining to appendix.
Nodes in the relation graph: In the previous content, we
assume K pre-selected semantic concepts as graph nodes.
However, it is not rare to reach some situation that cannot be
categorized into any existing semantic category. In practice,
we treat ct = 0 as a special “unknown” concept. Hence, the
BRM module actually contains K + 1 nodes. This is con-
ceptually similar to natural language processing: a semantic
concept is a word; the set of all concepts can be viewed as
the dictionary; and ct = 0 corresponds to the special “out-

of-vocabulary” token.
Smooth temporal classification: Although the semantic
classifier achieves high accuracy on validation data, the pre-
dictions may not be temporally consistent, which brings ex-
tra noise to the BRM module. For temporally smooth pre-
diction at test time, we set a restricted threshold over the
sigmoid output and apply a filtering process on top of that:
the actual prediction label for room type Ti will be 1 only if
the sigmoid output remains at least 0.9 confidence score for
consecutively 3 time steps.
Graph learning: For learning ψprior, we run a random ex-
ploration of 300 steps and collect 50 samples for each zi,j
per training environment. Also, learning ψprior does not de-
pend on the locomotion µ(st, g; θ) and can be reused even
with different control policies. ψobs depends on the locomo-
tion so it must be learned after µ(st, g; θ?) is obtained.

4. Experiments
We experiment on the House3D environment and pro-

ceed to answer the following two questions: (1) Does the
BRM agent captures the underlying semantic relations and
behave as we expected? (2) Does the BRM agent generalize
better in test environments than the baseline methods?

We first introduce evaluation preliminaries and baseline
methods in Sec. 4.1, 4.2. Then we answer the first question
qualitatively in Sec. 4.3. In Sec. 4.4, 4.6, we quantitatively
show that our BRM agents generally achieve higher test
success rates (i.e., better generalization) and spend fewer
steps to reach the targets (i.e., more efficient) than all the
baselines. We choose a fixed N = 10 for all the BRM
agents. Ablation study on the design choices of BRM is pre-
sented in Sec. 4.5. More details can be found in appendix.

4.1. Preliminaries
We consider the RoomNav task on the House3D envi-

ronment [58] where K = 8 room types are selected as the
semantic goals, including “kitchen”, “living room”, “din-
ing room”, “bedroom”, “bathroom”, “office”, “garage” and
“outdoor”. The House3D environment provides a success
check for whether the agent has reached a specific room
target or not while we also experimented on the setting
of the agent predicting termination on its own (Sec. 4.6).
House3D provides a training set of 200 houses, a test set
of 50 houses and a validation set of 20 houses. At training



Figure 6. Qualitative comparison between BRM (purple), basic
DRL policy (pure µ(θ), blue) and random policy (red) with hori-
zonH = 1000 (Sec. 4.3). Y-axis is the test success rate and x-axis
is the distance in meters to the target. When targets become far-
ther way from the starting point, the success rate of BRM stays
high while the basic DRL policy quickly degenerates to random.

time, all the approaches adopt the ground-truth semantic la-
bels regardless of the semantic classifier.

We evaluate the generalization performances of differ-
ent approaches with two metrics, success rate and Suc-
cess weighted by Path Length (SPL), under different hori-
zons. SPL, proposed by Anderson et al.[2], is a func-
tion of both success rate and episode length defined by
1
C

∑
i Si

Li

max(Li,Pi)
, where C is total episodes evaluated, Si

indicates whether the episode is success or not, Li is the
ground truth shortest path distance in the episode, Pi is
the number of steps the agent actually took. SPL is upper-
bounded by success rate and assigns more credits to agents
accomplishing their tasks faster.

4.2. Baseline Methods
Random policy: The agent samples a random action per
step, denoted by “random”.
Pure DRL agent: This LSTM agent does not have the
BRM module and directly executes the policy µ(st, T ; θ)
throughout the entire episode, denoted by “pure µ(θ)”. This
is in fact the pure locomotion module. As discussed in
Sec. 3.4, this is also an improved version of the original
policy proposed by Wu et al. [58].
Semantic augmented agent: Comparing to the pure DRL
agent, our BRM agents utilizes an extra semantic signals ct
provided by the semantic classifier in addition to the visual
input st. Hence, we consider a semantic-aware locomotion
baseline µS(θs), which is another LSTM DRL agent that
takes both st and ct as input (denoted by “aug.µS(θs)”).
HRL agent with an RNN controller: From a DRL per-
spective, our BRM agent is a hierarchical reinforcement
learning (HRL) agent with the BRM module as a high-level
controller producing sub-goals and the locomotion module
as a low-level policy for control. Note that update and plan-
ning on BRM only depend on (1) the current semantic sig-
nal ct, (2) the target T , and (3) the accumulative bit-OR fea-
tureB (see Sec. 3.3). Hence, we adopt the same locomotion
µ(st, g; θ) used by our BRM agent, and train an LSTM con-

troller with 50 hidden units on Etrain that takes all the neces-
sary semantic information and produces a sub-target every
N steps as well. The only difference between our BRM
agent and this HRL agent is the representation of the con-
troller (memory) module. The LSTM controller has access
to exactly the same semantic information as BRM and uses
a much more complex and generic neural model instead of
a relation graph. Thus, we expect it to be a strong baseline
and perform competitively to our BRM agent.

4.3. Qualitative Analysis and Case Study
In this section, we qualitatively illustrate that our BRM

agent is able to learn reasonable semantic relations and be-
have in an interpretable manner.
Prior knowledge: Fig. 5 visualizes P (z|ψprior), the
learned prior probability of relations, for 3 room types
with their most and least likely nearby (connected) rooms.
Darker red means more likely while darker blue implies less
likely. The captured knowledge is indeed reasonable: bath-
room is likely to connect to a bedroom; kitchen is often near
a dining room while garage is typically outdoor.
Effectiveness of planning: The BRM agent can effec-
tively decompose a long-term goal into a sequence of easier
sub-goals via graph planning. Fig. 6 visualizes the test suc-
cess rates of the BRM agent (BRM), random policy (“ran-
dom”) and the pure locomotion policy (“pure µ(θ)”) for in-
creasingly further targets over a fixed set of 5689 randomly
generated test tasks. The x-axis is the shortest distance
to the target in meters4 As expected, when the target be-
comes more distant, all methods have lower success rates.
However, as opposed to the pure locomotion policy, which
quickly degenerates to random as the distance increases, the
BRM agent remains a much higher success rate in general.
Case study: Fig. 7 shows a successful trajectory by the
BRM agent, where the final target is to get out of the house.
We visualize the progression of the episode, describe the
plans and show the updated graph during exploration. Note
that the final goal is invisible to the agent initially (frame 1©)
but the agent is able to plan, effectively explore the house
(e.g., without ever entering the bottom-right dining room
region), and eventually reach the target.

4.4. Quantitative Generalization Performances
We evaluate the generalization performances of different

approaches on Etest with horizons H = 300 and H = 1000.
We setN = 10, i.e., memory updated every 10 steps. Tab. 1
reports both success rates (%, percent) and SPL values (‰,
per mile) over 5689 fixed test tasks. In addition to the over-
all performances, we also report the results under different
planning distances, i.e., the shortest sequence of sub-goals
on the ground-truth relation graph. For an accurate mea-
surement, we ensure that there are at least 500 test tasks for
each planning distance.

4Typically one meter in shortest distance requires 3 to 4 actions.
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2nd row: the posterior of the semantic graph and the proposed sub-goals (red arrow). Initially, the agent starts by executing the locomotion
for ”outdoor” and then ”garage” according to the prior knowledge (1st graph), but both fail (top orange and blue trajectories in the map).
After updating its belief that garage and outdoor are not nearby (grey edges in the 2nd graph), it then executes locomotion for ”living
room” with success (red arrow in the 2nd graph, green trajectory). Finally, it executes sub-policy for“outdoor” again, explores the living
room and reaches the goal (3rd graph, bottom orange trajectory).

Our BRM agent has the highest average success rates as
well as the best SPL values in all the cases. Notably, the
margin in SPL is much more significant than that in pure
success rate. More importantly, as the horizon increases,
i.e., the larger number of planning computations H/N al-
lowed, the overall performance margin (rightmost column)
of BRM over the best remaining baseline strictly increases,
thanks to the effectiveness of planning.

4.5. Ablation Study

In this section, we show the necessity of all the BRM
components and the direction for future improvement.
Benefits of Learned Prior: In BRM, the prior P (z|ψprior)
is learned from training houses. Tab. 2 evaluates BRM with
an uninformative prior (“unif.”), i.e. ψprior

i,j = 0.5. Gener-
ally, the learned prior leads to better success rates and SPL
values. Notably, when horizon becomes longer, the gap be-
comes much smaller, since the graph will converge to the
true posterior with more memory updates.
Source of Error: Our approach has two modules, a BRM
module for planning and a locomotion module for control.
We study the errors caused by each of these components by
introducing (1) a hand-designed (imperfect) oracle locomo-
tion, which automatically gets closer to nearby targets, and
(2) an optimal planner using House3D labels. The evalua-
tion results are show in Tab. 3, where the oracle locomotion
drastically boosts the results while the BRM performance
is close to the optimal planner. This indicates that the error
is mainly from locomotion – it is extremely challenging to
learn a single neural navigator, which motivates our work to
decompose a long-term task into sub-tasks.
Choice of N : The oracle steps for reaching a nearby, i.e.,
1-plan-step, target is around 12.27 (top in Tab. 1), so we

choose a slightly smaller value N = 10 as the re-planning
step size. We investigate other choices of N in Tab. 4.
Larger N results in more significant performance drops.
Notably, our BRM agent consistently outperforms RNN
controller under different parameter choices.

4.6. Evaluation with Terminate Action

In the previous studies, the success of an episode is de-
termined by the House3D environment automatically. It is
suggested by Anderson et al. [2] that a real-world agent
should be aware of its goal and determine whether to stop
by itself. In this section, we evaluate the BRM agent and
all previous baselines under this setting: a success will be
counted only if the agent terminates the episode correctly in
a target room on its own.

There are two ways to include the terminate action: (1)
expand the action space with an extra stop action; (2) train
a separate termination checker. We observe (2) leads to
much better practical performances, which is also reported
by Pathak et al. [43]. In our experiments, we simply use
the semantic classifier as our termination checker.

The results are summarized in Tab. 5, where we use a
long horizon H = 1000 to allow the agents to have enough
time to self-terminate. Similarly, BRM achieves the best
performance in both success rate and SPL metric.

4.7. Discussions

Success rate and SPL: In Tab. 1, the SPL values are typ-
ically much smaller than the success rates, namely BRM
uses much more steps than the reference shortest path. This
is not surprising due to the strong partial observability in
the RoomNav task. As a concrete example in Fig. 7, the
optimal path from birthplace (near 1©) to the outdoor (near



opt. plan-steps 1 2 3 4 5 overall
avg. oracle steps 12.27 42.53 61.09 72.47 63.74 46.86

Horizon H = 300

random 20.5 / 15.9 6.9 / 16.7 3.8 / 10.7 1.6 / 4.2 3.0 / 8.8 7.2 / 13.6
pure µ(θ) 49.4 / 47.6 11.8 / 27.6 2.0 / 4.8 2.6 / 10.8 4.2 / 13.2 13.1 / 22.9
aug.µS(θ) 47.8 / 45.3 11.4 / 23.1 3.0 / 7.8 3.4 / 8.1 4.4 / 11.2 13.0 / 20.5

RNN control. 55.0 / 49.8 20.0 / 40.8 8.0 / 20.1 5.2 / 15.2 11.0 / 25.2 19.9 / 34.2
BRM 57.8 / 65.4 24.4 / 54.3 10.5 / 28.3 5.8 / 18.6 11.2 / 29.8 23.1 / 45.3

Horizon H = 1000

plan-dist 1 2 3 4 5 avg.
random 24.3 / 17.6 13.5 / 20.3 9.1 / 14.3 8.0 / 9.3 7.0 / 11.5 13.0 / 17.0

pure µ(θ) 60.8 / 47.6 23.3 / 27.6 7.6 / 4.8 8.2 / 10.8 11.0 / 13.2 22.5 / 22.9
aug.µS(θ) 61.3 / 50.1 23.0 / 26.2 9.4 / 12.0 5.8 / 9.6 9.0 / 13.6 22.4 / 23.8

RNN control. 71.0 / 58.0 39.6 / 51.3 24.1 / 32.7 16.6 / 25.6 23.2 / 39.6 37.0 / 45.2
BRM 73.7 / 74.9 43.6 / 66.0 29.2 / 44.9 20.4 / 27.1 28.4 / 42.5 41.1 / 57.5

Table 1. Metrics of Success Rate(%) / SPL(‰, per mile) evaluating the generalization performances of BRM and all the baseline ap-
proaches (Sec. 4.4). Here N = 10. “plan-steps” denotes the shortest planning distance in the ground truth relation graph. “oracle steps”
denotes the reference shortest steps required to reach the goal. Our BRM agents have the highest success rates and the best SPL values in
all the cases. More importantly, as the horizon increases, which allows more planning, BRM outperforms the baselines more.

BRM (H=300) unif. (H=300) BRM (H=1k) unif. (H=1k)
23.1 / 45.3 20.9 / 39.4 41.1 / 57.5 40.4 / 56.6

Table 2. Success Rate(%) / SPL(‰): performances of BRM with
learned and uninformative prior. N = 10, H = 300, 1000 (“1k”).

Src. of Err. LSTM locomotion oracle locomotion
BRM 41.1 / 57.5 88.6 / N.A.

opt. plan 46.3 / 62.5 96.7 / N.A.
Table 3. Success Rate(%) / SPL(‰): performances with an opti-
mal planner and a hand-designed locomotion. H=1000, N=10.

Choice of N N = 10 N = 30 N = 50
BRM 41.1 / 57.5 29.7 / 35.2 27.4 / 32.2

RNN control. 37.0 / 45.2 28.2 / 27.7 26.5 / 26.7
Table 4. Success Rate(%) / SPL(‰): performances with different
choices of N under horizon H = 1000.

Horizon H = 1000 with Terminate Action
random pureµ(θ) aug.µS(θs) RNN cont. BRM
1.8/1.2 8.6/9.0 8.2/8.8 14.5/16.3 17.3/23.0

Table 5. Success Rate(%) / SPL(‰) with terminate action evalu-
ating the generalization performances of BRM and baseline agents
with horizon H = 1000 and N = 10. Our BRM agent achieves
the best performances under both metrics.

3©) is extremely short if we know the top-down view in ad-
vance. However, the outdoor region is out of the agent’s
sight (frame 1©) and the agent has to explore the nearby re-
gions before it sees the door towards the outside (frame 3©).
Planning and updates on BRM helps guide the agent to ex-
plore the unknown house more effectively, which helps lead
to higher SPL values. But overall the agent still suffers from
the fundamental challenge of partial observability.

Pre-selected concepts: In this work, we focus on the mem-
ory representation and simply assume we know all the se-
mantic concepts in advance. It is also possible to generalize
to unseen concepts by leveraging the word embedding and
knowledge graph from NLP community [60]. It is also fea-
sible to directly discover general semantic concepts from
Etrain via unsupervised learning by leveraging the rich se-
mantic information (e.g., object categories, room types, etc)
within the visual input. We leave this to our future work.

5. Conclusion
In this work, we proposed a novel design of memory ar-

chitecture, Bayesian Relation Memory (BRM), for the se-
mantic navigation task. BRM uses a semantic classifier to
extract semantic labels from visual input and builds a proba-
bilistic relation graph over the semantic concepts, which al-
lows representing prior reachability knowledge via the edge
priors, fast test-time adaptation via edge posteriors and effi-
cient planning via graph search. Our BRM navigation agent
uses BRM to produce a sub-goal for the locomotion policy
to reach. Experiment results show that the BRM represen-
tation is effective and crucial for a visual navigation agent
to generalize better in unseen environments.

At a high-level, our approach is general and can be ap-
plied to other tasks with semantic context information or
state abstractions available to build a graph over, such as
robotics manipulations where semantic concepts can be ab-
stract states of robot arms and object locations, or video
games where we can plan on semantic signals such as the
game status or current resources. In future work, it is also
worthwhile to investigate how to extract relations and con-
cepts directly from training environments automatically.
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